¹³⁹La NQR Study in La₂CuO₄ over Temperatures up to 800 K

M. Matsumura, H. Yamagata, H. Yasuoka^a, and Y. Ueda^a

Department of Material Science, Faculty of Science, Kochi University, Kochi, 780-8520 Japan ^a Institute of Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan Reprint requests to M. M.; E-mail: matumura@cc.kochi-u.ac.jp

Z. Naturforsch. **57 a,** 499–503 (2002); received December 17, 2001

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

We have measured $^{139}\mathrm{La}$ NQR spectra and the nuclear spin-lattice relaxation rate for the highest $(\pm7/2\leftrightarrow\pm5/2)$ and the middle $(\pm5/2\leftrightarrow\pm3/2)$ NQR lines in the parent compound of high- $^{-}$ T superconductor, $\mathrm{La_2CuO_4}$, in a wide temperature range up to 800 K. From the abrupt increase of the quadrupole frequency ν_{Q} just below the tetra-ortho structural transition temperature T_{OT} which comes from the staggered tilt of the $\mathrm{CuQ_6}$ octahedra, the critical exponent β is evaluated to be 0.4 which is close to 0.5 expected in the standard mean field approximation for second order phase transition. In higher temperature than T_{OT} , the nuclear spin-lattice relaxation at La site is dominated by the quadrupole relaxation, not reflecting the critical spin dynamics in the CuQ plane. We successfully discriminate the two types of quadrupole relaxation rate, W_{Q1} and W_{Q2} . The relaxation rate W_{Q2} is one order of magnitude larger than W_{Q1} and increases with the critical exponent $\alpha\sim1.19$ toward T_{OT} .

Key words: La₂CuO₄; NQR; Structural Transition.